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APPROACHING MOONS FROM RESONANCE VIA INVARIANT
MANIFOLDS

Rodney L. Anderson*

In this work, the approach phase from the final resonance of the endgame scenario in a
tour design is examined within the context of invariant manifolds. Previous analyses have
typically solved this problem either by using numerical techniques or by computing a cata-
log of suitable trajectories. The invariant manifolds of a selected set of libration orbits and
unstable resonant orbits are computed here to serve as guides for desirable approach trajec-
tories. The analysis focuses on designing an approach phase that may be tied into the final
resonance in the endgame sequence while also targeting desired conditions at the moon.

INTRODUCTION

Solving the endgame problem as part of a tour design for a spacecraft traveling around multiple moons
has become key as missions to various moons are considered, and the problem has been approached using
a variety of different methods. Various definitions exist for the endgame problem, but it typically includes
the last several resonance transitions before the final approach to the desired moon. The resonance transition
problem has been approached using two-body patched conic methods, V. leveraging,' optimization tech-
niques,*° Tisserand criterion techniques,’~'° twist maps,'! and dynamical systems techniques.'>> Resonant
orbits have been shown to be essential to obtain a deeper understanding of these trajectory scenarios. Bollt
and Meiss> used the recurrence properties of chaotic dynamics to search for Earth-Moon transfers in the
circular restricted three-body problem (CRTBP), and Schroer and Ott** reduced the time of flight for these
transfers by targeting the invariant manifolds of unstable resonant orbits. Belbruno and Marsden proposed
that the resonance transition of comets could be explained using the weak stability boundary.?> The hetero-
clinic connections of libration orbits were then used to explain these resonance transitions by Lo and Ross,?
and Koon, Lo, Marsden, and Ross,'? while Howell, Marchand, and Lo'* verified this transition mechanism
numerically. Anderson and Lo further showed that the invariant manifolds of resonant orbits play an integral
part in the resonance transitions seen in ballistic,>"?” impulsive,?’ and low-thrust trajectories.'® In addition to
this, Lantoine, Russell, and Campagnola used unstable resonant orbits themselves rather than their invariant
manifolds as initial guesses in an optimization algorithm for trajectories stepping through resonances to a

moon.6’ 23

The final approach and capture phase has been analyzed primarily on a case by case basis in part because
the characteristics of the final orbit, or loosely captured trajectory, around the desired moon can vary signifi-
cantly depending on the particular application. The moon of interest for the majority of these studies has been
Europa. The Europa Orbiter?®3° design from 1999 (see Sweetser et al.”’ and Johannesen and D’ Amario®®)
used Finlayson’s PTool software’! to compute the trajectory for the final approach. Finlayson’s software has
been integral to this approach to the problem, and it worked by precomputing a database of potential trajec-
tories with desirable characteristics that were then tied into the rest of the tour trajectory. In 2011, a similar
technique was used in Grebow, Petropoulos and Finlayson®? to numerically search for trajectories approach-
ing Europa. Lo had observed in 2001 that some of the trajectories computed using the Mystic optimization
software appeared to follow the invariant manifolds of periodic libration orbits,* and Grebow et al. also ob-
served that some of their more desirable trajectories heuristically appeared to follow these invariant manifolds
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of libration point orbits or other periodic orbits in the CRTBP. Koon, Lo, Marsden, and Ross examined ap-
proaches to the libration orbits near the moon.>* The general escape problem was analyzed primarily with
the desire to understand stability by Villac and Scheeres.®® Kirchbach et al.*® looked at capture and escape
with the goal of understanding whether their analyzed trajectories intersected Europa or Jupiter. Anderson
and Lo*’ briefly examined the approach problem by investigating the resonances that trajectories ending at
Europa could originate from over a short time period. In that work, libration orbits and the resonances that
the libration point orbit invariant manifolds could travel to were also examined for different energies.

This study focuses on the final approach to the moon or secondary body in the CRTBP, assuming that
the spacecraft has already transitioned through the previous required resonances. The results presented here
are intended to give a representation of the types of trajectories that are available for this final approach so
that they may be tied into a trajectory transitioning through this previous set of resonances as needed for
specific mission requirements. Given that the recent Planetary Science Decadal Survey*® contained missions
to several different possible moons, this study examines and compares approaches for a range of different
systems. Several cases approaching planets are also included for comparison. The approach taken here is to
compute the invariant manifolds of unstable periodic orbits to use as a guide to provide a deeper understanding
of this final approach scenario from a geometric and visual perspective. One of the first questions that may
be asked is what resonances must be reached at the end of the resonant sequence to set up the spacecraft
for the final approach? A planar version of the Europa Orbiter (PEO) trajectory computed in Anderson
and Lo?° traveled through the 5:6 resonance as its final resonance before the final Europa approach. It was
determined that the trajectory selected the proper energy to target the L, gateway (described by Conley>?)
as computed using the stable manifold of a Lyapunov orbit at that same energy. More distant resonances
were not enclosed in the invariant manifolds of the Lyapunov orbit at this energy, and at other energies the
Lyapunov orbit invariant manifolds did not reach as far as the 5:6 resonance. This immediately suggests that
one technique for determining the resonances required for the final approach is to compute the Lyapunov
manifolds over different Jacobi constants and determine the resonances that they reach. This procedure is
performed for several different systems using Jacobi constants that would be expected to enclose a wider
range of resonances in the first section. The Jacobi constant is then varied for sample systems to determine
how the enclosed resonances change as the energy level of the trajectory changes. Other types of orbits such
as distant retrograde orbits among others have been observed to be significant to the approach problem,?
and they will be analyzed in the future. Different types of unstable resonant orbits are evaluated here for
selected systems and energies to determine which ones are most useful or desirable for approach within this
context. The AVs required for insertion into a 200 km altitude orbit are then computed using both the unstable
manifolds of resonant and Lyapunov orbits for selected systems. The energies where trajectories exist that
insert at periapse relative to Europa are used to provide an initial basis for understanding the trade between
the Jacobi constant and AV. Characteristics such as the time of flight of these trajectories are then analyzed.
The approach problem encompasses trajectories coming in for orbital insertion as well as landing and impact
trajectories, so landing trajectories are explored within the context of the invariant manifolds of Lyapunov
orbits. The results from this analysis provide a way to study the deformation of the invariant manifolds or the
libration orbit gateway in the ephemeris problem, and an initial study using this technique is undertaken. In
general the focus is on providing insight into the options available for final approach for different energies to
allow the trajectory to be tied into an arbitrary tour design.

BACKGROUND
Circular Restricted Three-Body Problem

The primary model used for these analyses is the CRTBP or the planar CRTBP (PCRTBP). A brief de-
scription of this model is provided here, and Szebehely*® may be referred to for more details. In this model,
the motion of an infinitesimal mass is modeled in a system containing two massive bodies, referred to here
collectively as the primaries, that rotate about their center of mass in circular orbits. The equations of motion



may be written in a rotating frame as
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Using this formulation, the x axis in the rotating frame is chosen so that it is aligned with the primaries, and
dimensionless quantities are used. The mass of the larger body (the primary) is 1 — u, and the smaller body
(the secondary) has mass p. The p values of several systems used in this analysis and others included for
reference are given in Table 1. The primary is then located on the x axis at x; = —p, and the secondary is

Table 1. Mass ratios for selected CRTBP systems

System o System o
Sun-Earth 0.0000030404234021  Jupiter-Europa 0.0000252664488504
Sun-Jupiter  0.0009538811803631  Jupiter-Ganymede 0.0000780369094055
Sun-Neptune 0.0000515112366612  Jupiter-Callisto 0.0000566799875169
Earth-Moon 0.0121505842705715  Saturn-Titan 0.0002365805491104
Jupiter-Io 0.0000470509314157  Neptune-Triton 0.0002087756659301

located on the x axis at xo = 1 — p. The dimensionless period of the rotating system is 27, while the distance
between the primaries, the mean motion, and the gravitational constant are all one. Finally, the distances
from the infinitesimal mass to the primary and secondary are r; and 79, respectively.

An energy-like integral of motion called the Jacobi constant is also known to exist in this problem. It may
be computed as
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It is also known’ that the Tisserand parameter, which is an approximation of the Jacobi constant, may be
written as a function of V, using

T=3-V2. 3)

This relationship may be used throughout this work to roughly relate the results at each Jacobi constant to
V. For selected Jacobi constants positions exist where the resulting velocity is imaginary. A spacecraft
cannot travel into these forbidden regions without a maneuver, and the curve bounding them is referred to as
a zero velocity curve.

Five equilibrium points are also found in this problem (the Lagrange points) about which unstable periodic
orbits exist. These unstable orbits and other unstable orbits found in the CRTBP are known to possess stable
and unstable manifolds. Heuristically, the stable (unstable) manifolds may be thought of as the trajectories
that approach the unstable periodic orbit of interest as the time goes toward infinity (negative infinity). More
formally, the stable and unstable manifolds for a flow ¢, are

Stable Manifold W*#(L): The set of points z such that ¢ (x) approaches L as t — oc.
Unstable Manifold W*(L): The set of points « such that ¢,(z) approaches L as t — —oc.
An offset of approximately 1 x 1075 dimensionless units is used to globalize the invariant manifolds in this

analysis.*! In the Jupiter-Europa system this value corresponds to approximately 0.671 km. See Parker and
Chua*? or Wiggins*® for more details on invariant manifolds.



For those trajectories computed in the CRTBP a symmetry exists so that departure trajectories can be
computed directly from the approach trajectories presented in this work. Specifically, if (z,vy, 2, ¢, 9, 2, t)
is a solution in the CRTBP, then (z, —y, z, —, 1, —%, —t) is also a solution.*>**45 This symmetry exists
precisely in the CRTBP and approximately in the ephemeris model.

Poincaré Sections

Poincaré maps are used throughout this analysis as a means to more easily visualize the relationship of a
trajectory to the invariant manifolds of unstable orbits. See Anderson and Lo?® for a more detailed descrip-
tion of the techniques as they are used here or Wiggins** for a more generic explanation. Briefly, they are
computed by placing a hypersurface ¥ or surface of section in R”~! transverse to a flow in R™. The mapping
is from one intersection of the trajectory with X to the next. For this work it has been found to be most
convenient to place 3 on the y = 0 line on the opposite side of the primary from the secondary. So for this
Poincaré section C is held constant, and y = 0. Then given known values for z and z,
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A one-sided Poincaré map is computed here with y > 0. A Runge-Kutta Fehlberg seventh-order integrator
with stepsize control is used to generate the Poincaré sections.

The majority of the Poincaré sections shown here are plotted using x and & given that y = 0. Occasionally
it is helpful to plot using the Delaunay variables'? L and g. L is the square root of the semimajor axis, and g
is the argument of periapse relative to the rotating x-axis. A relationship between L and the resonance can be
written as
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where ¢ is the gravitational parameter of the primary.

Single-Shooting Algorithm and Continuation

A single shooting method*® based on the symmetry about the z-axis in the CRTBP mentioned earlier
was used to compute the libration and resonant orbits for this analysis. Some modifications were made to
the algorithm to account for the fact that the first intersection with the z-axis is not necessarily the desired
intersection for some resonant orbits. The instability of the orbits computed here puts a lower limit on the
error of approximately 10! for the single shooting technique.*’

Once a periodic orbit in a particular family is computed, a continuation method*® is used to compute more
orbits in the family. A continuation method similar to that used by Gémez, Llibre, Simé 20014% was imple-
mented for this study. For this work, the same type of corrector was used, but a simple linear extrapolation*’
was found to be sufficient as a predictor for most of the cases.

RESONANCES REQUIRED FOR APPROACH THROUGH THE LYAPUNOV ORBIT GATEWAY

Given the knowledge that Lyapunov orbits act as a gateway, it is natural to use this gateway as a starting
point to search for trajectories approaching a moon or the secondary in the CRTBP. The invariant manifolds
of these Lyapunov orbits at a given Jacobi constant divide the phase space and allow us to determine those
trajectories with the conditions necessary to approach the region around the secondary. One method to de-
termine the properties of the trajectories with the characteristics required to enter this region is to look at
the stable manifolds of the Lyapunov orbit integrated backward in time. A convenient method for easily
visualizing these stable manifolds relative to other trajectories is to compute their intersections with 3. This
technique provides a means to assess the resonance required at a point some time prior to final approach. The
trajectory is least perturbed by the secondary at this point, and resonant orbit intersections along with invariant
manifolds can be computed relative to this Poincaré section to evaluate trajectories capable of approach.



The Lyapunov orbit invariant manifolds could be extended further back in time, but the question of imme-
diate interest in this study is which resonances allow for a relatively direct approach. We want to back up to
find the last resonance or one of the last resonances that the trajectory needs to travel through before the final
approach. It is possible that the trajectory could travel backward in time through several resonances and one
of the resonances could be found, but the last resonance in the sequence is the one of interest for this work.
Direct approaches may also be targeted with large AVs, but this study focuses on the low-energy regime.
The results from this section answer the question of which resonance is necessary for a particular approach
by examining variations in both C and .

Lyapunov Orbit Characteristics in Selected Systems

The first step in the process of analyzing the resonances enclosed by Lyapunov orbits in various systems is
to compute the Lyapunov orbits using continuation over a range of Jacobi constants. The orbits are commonly
computed in the literature,®>! and their characteristics are well-known. As many of the possible missions of
interest involve approaches from exterior resonances, this study focuses on computing L, libration orbits.

The range of Jacobi constants used here for each L, Lyapunov orbit family are given in Figure 1(a) for the
selected set of three-body systems. The range in each of these cases terminates at the lower Jacobi constant
where the Lyapunov orbits in the family encounter the surface of the moon. The Lyapunov orbit family can,
of course, generally be continued below the surface of the moon, and the dynamics of the associated invariant
manifolds may still be used by spacecraft within the system. The upper bound on the Jacobi constant for
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Figure 1. The ranges of the Jacobi constants of each set of Lyapunov orbits at Lo
considered for each system over different values of ;.. The upper bound is the Jacobi
constant at the Ly libration point, and the lower bound is set where the Lyapunov
orbit encounters the surface of the secondary. (Note that a log scale is used for the
horizontal axis of (b))

each system is given by the Jacobi constant of the libration point, because the Jacobi constants of the orbits
approach this value as the orbits become very small.

Possible Approach Resonances for Different Systems (Vary 1)

As a first step in estimating the resonances that are required for approach to the secondary, the resonances
enclosed by the Lyapunov orbit stable manifolds may be computed over different Jacobi constants. As the
Jacobi constant is decreased, the Lyapunov orbit manifolds stretch to enclose additional resonances. For most
mission design applications, having these additional resonances available is a potentially desirable option
because the resonances included at lower Jacobi constants deviate the most from a 1:1 resonance with the
secondary. Access to these resonances is beneficial since the spacecraft is typically attempting to approach



the secondary from distant resonances. In the following discussion, the term near will be used to refer to
those resonances that are closer to a 1:1 resonance with the secondary, and the term distant will be used to
refer to those resonances that vary the most from the 1:1 resonance. In the case of Europa orbiter trajectories,
the trajectory typically winds down from distant exterior resonances with the goal of coming closer to the
1:1 resonance. Once the trajectory reaches a resonance enclosed by the Lyapunov orbit manifolds it becomes
possible to enter through the Lyapunov orbit gateway and approach the secondary. So from this perspective,
the fact that the Lyapunov orbit manifolds at lower Jacobi constants enclose the greatest number of resonances
including those deviating the most from the 1:1 resonance means that examining the invariant manifolds of
these Lyapunov orbits would reveal the resonance required for approach to the secondary using the most
direct path as the trajectory traverses the resonances. There are other factors to consider such as how to tie
the approach into the rest of the tour and whether a potential AV is needed to target the proper energy. But for
this first portion of the analysis, the Lyapunov orbit on the low end of the Jacobi constant range in each system
corresponding to the Lyapunov orbit that grazes the surface of the secondary was used to obtain an estimate
of the typical minimum requirements on the resonances required for approach. For the energies typically
found in an endgame scenario,?*3 this method therefore provides a bound on the resonances required for
the approach. It is also worth noting that the Lyapunov orbit families can be computed for those orbits going
below the surface of the secondary, so the energy range may be extended this way if so desired. For this
study, this condition was selected as a bound, and most traditional endgame scenarios will likely fall in this
energy range. At higher Jacobi constants, fewer resonances may be available, but this will be examined later.

The trajectories on the Lyapunov orbit stable and unstable manifolds are computed in each case as given
in Figure 2, and the intersections with the surface of section given in the figure are recorded. This process
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Figure 2. Illustration of the stable and unstable manifolds of an L, Lyapunov orbit in
the Jupiter-Europa system for C = 3.0025. The trajectories on the invariant manifolds
are computed until they reach the selected surface of section, 3, on the y = 0 line on
the far side of Jupiter from Europa.

is repeated for selected systems over a range of Jacobi constants, and the results are shown in Figure 3. In
each case the same colors are used to designate the stable and unstable manifolds as used in Figure 2, and
the intersections with the £ = 0 line indicate potential enclosures of new unstable resonant orbits as found
in Anderson and Lo.?’ In any case, examining the invariant manifolds shows the range of = values reached
for these conditions, and consequently the potential targets for approach in terms of approximate resonances.
More details on these resonances will be given shortly, but it is enlightening to compare the differences in
the various systems. Keep in mind that these systems are different in their ;o values as well as the Jacobi
constant where the Ly Lyapunov orbit grazes the surface of the secondary and the scale of x on the horizontal
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Figure 3. Poincaré section along 3. showing the intersection of the stable manifold of
the L, Lyapunov orbit in green and the intersection of the unstable manifold in red.
In each case, the plot is given for the Jacobi constant corresponding to a Lyapunov
orbit that just grazes the surface of the secondary in the designated system.

axis. Several general trends can be observed though.
plots, it can be seen that in general as p increases, the intersections reach further away from -1. This does

Noticing that the x-axis scale differs in some of the



not mean however that a greater number of potential resonances is necessarily enclosed. This trend continues
as p is increased with similar results for the Earth-Moon system. More specifically, it appears that the most
distant resonance that is reached in the Jupiter-Europa system is the 5:6 resonance. The arms of the invariant
manifolds at the top and bottom of this plot would extend to the left further if the Jacobi constant were
decreased more, and it could be imagined that for very high energies, or low Jacobi constants, they might
approach the 3:4 resonance. This is the case especially if the arms are not required to reach £ = 0, and
an approximate resonance might be targeted. The 5:6 resonance is definitely enclosed for this case, but for
the Jupiter-Io and Jupiter-Ganymede systems with slightly higher p values, it appears that a new resonance
is potentially enclosed. The Jupiter-Io system seems to just barely reach this resonance, and the Jupiter-
Ganymede system reaches it handily. A similar situation appears to exist for the Saturn-Titan system, but at
this point, the manifolds are beginning to travel to another resonance. It can be imagined that a trajectory
could target the stable manifold arm by using a nonzero & for more negative values of x. Finally, for the
Sun-Jupiter system it appears that the arms reach this more negative crossing on the x-axis. A more detailed
look at several of these cases will be considered next.

Relationship of Resonant Orbits to Lyapunov Orbit Invariant Manifolds

Up until this point, it has been assumed that when the invariant manifolds of the Lyapunov orbits stretch
further to another position on the £ = 0 axis, they are enclosing or reaching the vicinity of new resonant
orbits from which a final approach may be planned. The details of the final approach design will depend
heavily on the particular resonant orbit that is selected and its relationship to the invariant manifolds of the
Lyapunov orbit at the same Jacobi constant. Several resonant orbit families are computed here, and the types
of families are compared to determine which ones are most beneficial for use in the final approach.

First, it is helpful to provide a brief definition of resonance as it is used in this paper. Resonant orbits in the
two-body problem are defined in a straightforward manner. In this model, a body is periodic in the rotating
frame when the body travels around the primary p times for every ¢ times the secondary travels around, where
p,q € N. The relationship between the resonant integers, mean motions, and periods of the spacecraft and
the smaller primary may be written as
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respectively. In this paper, the form p:q is used to denote the resonances, which is the same as [secondary
period]:[spacecraft period] or [spacecraft revolutions]:[secondary revolutions]. Murray and Dermott>> may
be referred to for a more detailed explanation of resonance in the three-body problem. For this case where
the three-body perturbations become important they define resonance according to

pnp = qng @)

See Anderson and Lo* for a more detailed explanation of resonance as it is used here.

Resonant orbits may be computed using a variety of different techniques. The resonant orbits examined
in this study are symmetric about the y = 0 line such that they lie on the # = 0 line of the Poincaré section
computed using ¥ in Figure 2. One method for computation of these resonant orbits is to continue them from
approximate two-body orbits with the desired period into the three-body problem with the desired value of 1
by gradually increasing p from near zero or another value where the approximation is considered valid. This
technique is commonly used,®?? and it is used to compute some of the orbits presented here. For this method,
an initial guess for the initial velocity of this resonant orbit with p near zero may be computed as

- \/2 (— M, GM) ®)
2adim  Todim

where the initial guess is assumed to be on the y = 0 line at an apse. The values for velocity (v), semimajor
axis (a), and gravitational parameter (G M) are all dimensional. If GM is assumed to be that of the barycenter,




the dimensionless equation can be written simply as
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The value for @ may be determined from the resonance as
P,/ 2/3
o= ( 2 ) | (10)

So for a 3:4 exterior resonant orbit, the ratio in the parenthesis would be 4/3. Given this initial position
and velocity in the inertial frame, the state may then be transferred to the rotating frame as an initial guess
for the resonant orbit. In general, it has been found that this technique provides a good initial guess for the
continuation. Another method that is commonly used for computing libration point orbits, using the analytical
expansions around the libration points,>? is not available here, so a numerical search along a grid of initial
conditions is made use of to compute several of the desired resonant orbits. For these cases, a grid computing
trajectories in parallel is sometimes used to speed up the process. By virtue of the algorithm used to compute
them, the resonant orbits at each resonance, at least those computed in this work, are located on the # = 0
line in the Poincaré sections. So each new intersection of the Lyapunov orbit manifolds with this line as the
Jacobi constant decreases represents the enclosure of a potential new resonance or resonant orbit. Again, this
is not to say that a trajectory with a small value of & could not be used to target the gateway.

It has been mentioned that several different families of orbits may exist near a particular resonance. They
often have similar but not exactly the same periods, and they are topologically different. In previous work
several different types of resonant orbits have been found to exist near a particular resonance.?” One resonant
orbit was found in particular that came from the exterior region, passed by Europa between Europa and
Jupiter, and then returned to the exterior region. This 5:6 resonant orbit was found to lie entirely within the
invariant manifolds of the Lo Lyapunov orbit at this energy level which corresponded to a final approach of
the PEO. Other families of unstable resonant orbits exist for this resonance and for different energy levels,
so it is worth comparing these orbits to determine their relationship to the invariant manifolds of Lyapunov
orbits. It is also worth determining whether the relationship discovered earlier holds true for different Jacobi
constants.

As an initial examination of this problem, the 5:6 orbit in the Jupiter-Europa system is computed for
different energy levels, and a comparison is made to another resonant orbit at the 5:6 resonance. This family
was computed here for a wider range that includes the energy where the Lyapunov orbit grazes the surface
of Europa, and the resulting orbits are plotted in Figure 4(a). A 5:6 resonant orbit family computed using
continuation from a two-body initial guess is given in Figure 4(b). It can easily be seen that the families pass
on different sides of Europa at their close approaches. The family in Figure 4(a) will be referred to as the
5:6-NI family for a 5:6 resonant orbit with no loop on the line of syzygy that passes through the interior,
and the family in Figure 4(b) with one loop on the line of syzygy near Europa on the outer region will be
designated as a 5:6-LO orbit. One interesting feature of the 5:6-NI orbits is that some of them develop loops
on either side of Europa, but they only exist for certain energies. The family may be further continued as the
neck region to the right of Europa moves down to the y = 0 line and crosses it, but these orbits are not needed
here.

To answer one of the initial questions of this study as to whether the 5:6 orbit examined previously stays
within the Lyapunov orbit invariant manifolds for different Jacobi constants and how this compares to other
5:6 orbits, each type of 5:6 orbit was computed for the Jacobi constant where the Lyapunov orbit grazes the
surface of Europa. Their intersections with > compared to the Lyapunov orbit invariant manifolds are shown
in Figure 5. The resonant orbits at this energy are similar to the resonant orbits at the lowest energies shown
in Figure 4. The intersections show that the 5:6-NI orbit lies within the stable manifold of the Lyapunov
orbit while the 5:6-LO orbit falls outside of them. This result might be expected since the 5:6-NI orbit has to
pass through the Ly gateway while the 5:6-LO orbit does not. This fact does have implications for the final
approach. It indicates that the 5:6-NI orbit may be the more obvious choice to start from if a close approach to
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Figure 4. Two 5:6 resonant orbit families in the Jupiter-Europa system
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Figure 5. Poincaré section along Y. showing the intersection of the stable manifold
of the Lo Lyapunov orbit in green. Plotted for the Jacobi constant where the Lo
Lyapunov orbit just grazes the surface of Europa. (C = 2.9997485449927250)

Europa is desired. Indeed, at this energy, the 5:6 inner resonant orbit directly encounters Europa. Of course
its invariant manifolds also encounter Europa, and some of the invariant manifold trajectories also travel
even closer to the center of Europa, which is important for other energies and systems where the resonant
orbit travels above the surface of the desired body. The outer resonant orbit remains far from Europa, and
its invariant manifolds do not travel to Europa over the time periods of interest here. The analysis so far has
confirmed the existence of these different types of resonant orbits over different energies in the Jupiter-Europa
system for the 5:6 resonance. The location of the 5:6-NI orbit within the stable manifold of the Lyapunov
orbit indicates that it is a potentially desirable type of orbit. A further question is do these types of orbits
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exist in other systems and for other resonances where they might be useful for approach? This ties in with the
previous analysis in determining the minimum requirements on the resonance for the final approach phase.

The next case chosen for analysis to explore this question is the Jupiter-Ganymede system. In this sys-
tem, the invariant manifolds of the Lyapunov orbit appear to just reach the 3:5 resonance. So in this case
the approach for different resonance, 1, and C values is examined. For this case, a numerical search was
conducted with a grid to look for an orbit with characteristics similar to the Jupiter-Europa 5:6-NI orbit with
these new criteria in mind. The resulting family of orbits is given in Figure 6(a). The family shown here was
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Figure 6. The Jupiter-Ganymede 3:5 resonant orbit family with the corresponding orbit periods.

continued a little further than for the Jupiter-Europa case, but the Jupiter-Ganymede case at this resonance
has the same general characteristics as those seen in the Jupiter-Europa case. Now the question of the reso-
nance that the Lyapunov invariant manifolds are reaching on the far left of the Poincaré sections can be more
precisely answered. From the plots of the family in position space, it can be seen that there are three major
loops on the trajectory as it travels around Jupiter. Each of these loops corresponds to a periapse, indicating
that three revolutions of the spacecraft have occurred. The number of revolutions of the secondary in this
time period can be computed by looking at the period of the orbit relative to the period of the secondary.
The periods normalized by the period of Ganymede for the resonant orbit family computed in Figure 6(a) are
given as a function of C in Figure 6(b). It can be seen that the period actually varies noticeably depending
on the value of C. This is where the difference between resonance in the two-body and three-body problems
becomes apparent, as the relationship of the periods is approximate in the three-body problem. It does appear
that especially for the Jacobi constants typically of interest for mission design, the trajectory is near the 3:5
resonance.

Now, if the trajectory’s intersection with the surface of section is shown relative to the stable manifold of
the Lyapunov orbit as given in Figure 7, it can be seen that this orbit lies within the manifold as well. From
this result it appears that this type of orbit exists at least for a significant subset of possible cases, and if this
type of orbit allows for easier approaches in the final phase of the endgame, it is an important type of orbit to
consider in the design process. The utility of this type of orbit will be examined relative to approaches using
the invariant manifolds of the Lyapunov orbits in a later section.

Possible Approach Resonances for Different Jacobi Constants (Vary C)

Now that the most distant resonances generally feasible for approach for each system have been shown, one
question, especially for a trajectory approaching from exterior resonances might be at what Jacobi constant
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Lo Lyapunov orbit in green. Plotted for the Jacobi constant where the Lo Lyapunov
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levels are the resonances available? This question must be considered in combination with the AV for capture
which would decrease with higher Jacobi constants or lower energy. Another question is what is the lowest
Jacobi constant that a particular resonance would be feasible to use for approach when the resonant orbit
is enclosed in the resonance? An initial look at four sample energies in Anderson and Lo*’ showed some
evolution in the Lyapunov invariant manifolds with energy that indicated some resonances might no longer
be enclosed as C increases. This possibility is examined in more detail here using the Saturn-Titan system
as an example. The Poincaré sections including the invariant manifolds of the Lyapunov orbit are shown for
several Jacobi constants in Figure 8. It can be seen from this series that as the Jacobi constant increases, fewer
resonances are enclosed. Above C = 3.0148 the invariant manifolds no longer encounter the x = 0 line, and
as C increases further, the invariant manifold intersections move further from this line. So at this point, the
Lo gateway would require a nonzero ¢ to target the final approach.

A similar situation exists for the other systems analyzed here, and the Poincaré sections for several selected
cases for the C where the Lyapunov orbit invariant manifolds start to fall away from the most distant resonance
are shown in Figure 9. One interesting feature seen in these plots is that the closer resonances tend to leave
the Lyapunov invariant manifold enclosure first. The outer resonances seen in Figure 3 tend to stay available
longer until the Jacobi constants labeled in each subfigure. Even so, it can be seen that in some of the figures,
a small value of & would allow the gateway to be targeted for even higher values of C. Another interesting
result is the different behavior in the Saturn-Titan case. The invariant manifold arms stretching to the left in
this case did not quite reach the £ = 0 line, and as the Jacobi constant increases the stable manifold covers
the most distant resonance until the Jacobi constant becomes relatively high.

ORBIT INSERTION VIA LYAPUNOV AND RESONANT ORBIT INVARIANT MANIFOLDS

The desirability of different approaches to Europa may be measured using several different metrics. Of
course the desired characteristics will depend on the overall purpose of the mission, such as whether the
spacecraft is a lander or orbiter, and constraints imposed at the beginning of the final approach phase must
be taken into account. One metric that can be used for an orbiter mission is the AV required to insert into
a circular orbit around the secondary. The approach trajectories using the invariant manifolds of resonant
orbits are analyzed here and compared to the approaches possible using Lyapunov orbit invariant manifolds
at the same energies. This type of trajectory was investigated previously for a single case.>* An invariant
manifold trajectory of a resonant orbit was also found to eventually approach the vicinity of the secondary
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Figure 8. Poincaré sections showing the stable and unstable manifolds of the Lo
Lyapunov orbit for different Jacobi constants in the Saturn-Titan system.

after a significant period of time in Vaquero and Howell.?> Here we are more interested in trajectories that
approach the secondary from the resonant orbit more directly. It is expected that the AV will be minimized
by searching for the invariant manifold trajectories that possess a periapse at the desired altitude of 200 km.
In each case, the trajectory is assumed to be inserted into an orbit with a velocity in the same direction
as the approach trajectory. Assuming that these orbits insert tangentially, it is expected that the AVs for
the Lyapunov orbit and resonant orbit manifolds will be similar. For a given Jacobi constant, the velocity
magnitude at a selected position will be defined. So a trajectory on the invariant manifold of a Lyapunov
orbit and a resonant orbit at the same Jacobi constant encountering Europa at the same position would have
the same velocity magnitude in the rotating frame. The only potential difference is in the velocity direction,
and if this is constrained to be tangential, the velocity at this point is the same excepting a possible sign
difference. This situation leaves possible differences as a result of the position of the periapse around Europa
which does result in some variation in the velocity depending on the system under consideration and the size
of the secondary.

For this analysis the unstable manifold trajectories possessing a periapse at 200 km were first computed for
the Lyapunov orbits across a selected range of Jacobi constants in each system to verify that they exist at the
desired energy and to numerically determine the AV required for insertion into a circular orbit. If multiple
apses were found, the one possessing the minimum AV was selected and saved for comparison with the
approach via the resonant orbit unstable manifold. A similar procedure was followed for the resonant orbit,
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but in this case particular energies were used to verify that approximately the same result could be achieved.
The results are plotted in Figure 10 for several different systems. In each case, the color of the line indicates
the system that was used, and the solid line corresponds to the Lyapunov orbit results. The points plotted on
each line are the results from the resonant orbits. The orbits can often be continued further, but this provides
a sample of the results.

The specific characteristics of the approach trajectories originating at the resonant orbit as computed in
Figure 4(a) are of interest. One typical trajectory for a Jacobi constant of 3.0024 with a periapse at 200
km is shown in Figure 11. It can be seen that this particular trajectory on the unstable manifold of the
5:6 orbit is integrated from a point just prior to the first Europa flyby. On the second flyby it comes close
enough to Europa for the desired orbit insertion. The integration time from the initial offset on the 5:6 orbit
is approximately 41.6 in dimensionless units or 23.5 days. It is interesting that the characteristics of this
approach trajectory are very similar to the approach of the PEO trajectory analyzed in Anderson and Lo.?
In analyzing this trajectory keep in mind that it may be possible to target the invariant manifold trajectory at
some point after this initial time, such as apoapse on the far side of Jupiter from Europa, to cut out some of
the time required for the trajectory. This method was used successfully to develop resonant orbit sequences
in Anderson and Lo.?! For this case the time from this apoapse to orbit insertion was approximately 20.38
dimensionless time units or 11.5 days.

An unstable manifold of the Lyapunov orbit that approaches Europa with a periapse at 200 km is shown in
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Figure 12. For this case, the time of flight of the approach from the Lyapunov orbit to Europa is approximately
4.9 dimensionless units or approximately 2.8 days. The time for approach from the apoapse of the Lyapunov
orbit’s unstable manifold on the far side of Jupiter may vary depending on the specific trajectory that is
selected, but it is typically on the order of 23-24 dimensionless units (13.0-13.6 days) for a trajectory traveling
from near the 5:6 resonant orbit. In general there may also be some time involved in connecting these stable
and unstable manifold trajectories as the spacecraft travels along the Lyapunov orbit. So the quickest potential
transfer from the apoapse opposite Europa via Lyapunov invariant manifolds is on the order of 16 days not
including any time for phasing around the manifolds. As might be expected, the resonant orbit’s unstable
manifold gives a more direct approach to the secondary.

COMPARISON OF MANIFOLDS TO TRAJECTORIES COMING OFF SURFACE

While the invariant manifolds of resonant orbits and Lyapunov orbits provide two options for traveling
to the secondary, another tactic for analyzing this approach phase is to integrate trajectories that terminate
at the secondary backward in time to eventually connect them to some desired point. This method is used
here following the techniques described in Anderson and Parker,> and it is similar to the approach taken
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by Grebow et al.3? that was mentioned previously. In this case, however, the focus is on shorter time spans
for the last segment of the trajectory. The previous works typically focused on larger time intervals. In this
case a comparison is made to the invariant manifolds of the Lyapunov orbit to determine the nature by which
target points for specific types of trajectories to the surface may be selected. Some interesting questions to be
answered are related to whether trajectories with particular approach parameters are grouped together within
the stable manifold and how the enveloping stable manifold may be used as a guide or boundary for mission
design. The method used here is applicable to landing trajectories, which are currently of some interest,
traveling to the surface of the secondary. It should be mentioned that this technique can be easily applied
to orbit insertion using trajectories originating above the surface of Europa, and the previous analysis using
invariant manifolds for orbit insertion could likewise be extended to landing trajectories. In brief, trajectories
are integrated backward in time from the surface of the secondary, which in this case is Europa. The location
of the end point of the trajectory is specified by the angle o which is defined to be zero in the positive x
direction and is positive in the counterclockwise direction. The velocity coming into the surface is specified
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by the angle 6. 6 is zero for velocities normal to the surface and positive in the counterclockwise direction as
well.

The results for a sample analysis at a Jacobi constant of 3.0025 are shown in Figures 13 and 13(b). The
results in Figure 13 plot the trajectories showing the termination angle relative to the surface, and the results
in Figure 13(b) plot them relative to the termination position on the surface. As expected, the trajectories
approaching the surface of Europa are contained within the invariant manifolds of the Lyapunov orbit. Ex-
amining the close-up view in Figure 13, it is interesting that a range of angles relative to the surface seem to be
available if the target point in the Poincaré section is changed a little in either = or & for most locations. The
trajectories in the band seem to be well-mixed with respect to §. The results plotted relative to the location
on the surface seem to be less mixed together. Particular bands of trajectories from specific final destinations
are found here, however at each resonant loop, there appear to be a mix of possible targets. These results
answer some of the initial questions posed earlier in a general sense. More work has been done to examine
this problem for different systems and will be presented in a future paper. The results here provide some
additional insights though that are discussed in the next section.

EPHEMERIS EFFECTS

One problem that has been of interest is to gain a more thorough understanding of how the invariant
manifolds of unstable orbits deform as the problem is moved from simpler models to more complex. The
fact that the trajectories in Figures 13 and 13(b) are enclosed by the Lyapunov manifolds yet seem to fill
them out suggests one method that might be used to understand how Lyapunov manifolds change in the
ephemeris problem compared to the CRTBP. Rather than attempting to compute the manifolds directly, the
trajectories may be integrated from the surface of the secondary as in the CRTBP, and the deviation of this
set of trajectories from those in the CRTBP computed with the same velocity profile (Jacobi constant) may
be observed. This method also provides a more direct analysis of the trajectories that are often of the most
interest, those trajectories that approach the surface or near the secondary. All of the trajectories observed in
this case also have a known velocity at the secondary.

A short analysis of these types of trajectories is presented next. Several additional complicating factors
are introduced at this point. For trajectories in the ephemeris problem, the initial epoch of the integration
becomes important. Additionally, the results will vary over the orbit of the secondary typically varying most
widely from periapse to apoapse.” An analysis of this variation for trajectories integrated over a 50 day
time period and terminating at Europa in the Jupiter-Europa system at two sample epochs is given in Figure
14. Note that for this case, since the problem is no longer in the CRTBP, the complete state may no longer
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Figure 14. Intersections with X in the ephemeris model of trajectories terminating at
the surface of Europa in the Jupiter-Europa system.



be computed from the location of the intersection with . A rough idea of the effects of the ephemeris,
however, may still be obtained, especially relative to different dates along the orbit. The results shown here
are computed at the periapse and apoapse of Europa, and they show two of the extremes in the distances to
which the trajectories travel. It appears that the apoapse case has trajectories that travel further away than the
periapse case. If other dates are examined, dates just before and after periapse appear to have trajectories that
also travel further away. These initial results indicate that specific trajectories in the ephemeris problems may
have desirable qualities for the approach phase, and this avenue will be explored further in the future.

CONCLUSIONS

The resonances required for the final approach in the endgame problem were evaluated for several selected
systems using the computation of the invariant manifolds of Lyapunov orbits in the CRTBP. Specific 5:6 and
3:5 resonant orbits were computed for the Jupiter-Europa and Jupiter-Ganymede systems, respectively. A
special type of resonant orbit was found to exist for the desired resonance in the Jupiter-Ganymede system
as well as in the Jupiter-Europa system, and they were evaluated to determine their suitability for the final
approach. These particular orbits were found to be desirable for the approach having AVs similar to the
Lyapunov orbit case and possessing time of flights roughly 4.5 days shorter than the Lyapunov orbit invariant
manifolds. The final approach of a trajectory on the invariant manifold of one of the resonant orbits was
found to be similar to the final approach of the planar Europa Orbiter computed in earlier works. The Jacobi
constants at which distant resonances were no longer enclosed in the Lyapunov orbit invariant manifolds
were quantified and compared for different systems. A comparison of Lyapunov invariant manifolds to
trajectories encountering the secondary across its surface showed that they bound these trajectories, and
that many potential different approaches are available at each resonance. The fact that the stable manifolds
bounded these trajectories was used to take an initial look at the potential change in the invariant manifolds
in the ephemeris problem.

FUTURE WORK

Avenues for future work include examining additional systems, including interior resonances, tying the
approach into the tour, and adding low thrust to the scenario. These studies are currently in process, and
additional work is being done to understand the results within the ephemeris.
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